WHAT ARE

FIELD PROGRAMMABLE

Audible plays called at the line of scrimmage?

Signaling for a squeeze bunt in the ninth inning?

They're none of the above!

We're going to take a look at:

Field Programmable GATE ARRAYS (FPGAs)

The FPGA

What is it, and why do we care?

The FPGA

- First of all, why do we care?
 - Some of the "cutting edge" developments in amateur radio equipment involve FPGAs.
 - Three Software Defined Radios (SDRs) are examples.
 - First the HPSDR Hermes transceiver, and the ANAN-10 and ANAN-100
 - Second ANGELIA and the ANAN-100D
 - Third the Flex-Radio Models 6500 and 6700

HPSDR

- HPSDR means High Performance Software Defined Radios
- It's a collection of "open source" hardware and software projects designed by interested experimenters worldwide.
- Hermes is one of the latest projects.
- The first Hermes boards were sold by TAPR, the Tuscon Amateur Packet Radio group in late 2012.
- Now supplied by Apache Labs in Haryana, India
- Models now available with 10W and 100W amplifiers called ANAN-10 and ANAN-100

ANAN-10 and ANAN-100

Hermes + 10 Watt Amplifier

Hermes + 100 Watt Amplifier

- Not a traditional superheterodyne architecture
- (DDC) Direct-Down Conversion Receiver
- (DUC) Direct-up Conversion 500 mW transmitter
- Gigabit Ethernet Internet Interface
- On a single 8-layer 12 cm x 16 cm printed circuit board
- Coverage from 50kHz to 55MHz
- AM, FM, RTTY, CW, LSB, USB, Digital
- Supports multiple receivers
 - sharing one antenna
 - with suitable software
- Current user-software is free

ALTERA EP3C40Q240C8N

- Number of Logic Blocks (CLBs)* 2475
- Number of Logic Elements 39,600
- Number of I/Os 128
- Package Plastic Quad Flat Pack with 240 pins
- Price \$78.50
- * CLB means Configurable Logic Block...more about that later!
- Verilog code for Hermes written by Phil Harman, VK6APH, from Perth, Australia

• Flex Radio's PowerSDR software adapted primarily by Bill Tracey, KD5TFD and Doug Wigley, W5WC

ANGELIA

- 4th Generation DDC/DUC Transceiver Board
- In Apache Labs ANAN-100D 100 W Transceiver
- Has Dual Analog-to-Digital Converters
- Capable of 7 Simultaneous Receivers
- Allows Synchronizing Receivers for Coherent Receiver Operations (Diversity & Beam Steering)

Angelia

ANAN-100D

cuSDR Software with Angelia

- 7 "slice" receivers
- cuSDR beta software (RX only) written by Hermann, DL3HVH

FLEX 6000

FLEX 6000

- SCU is a Spectral Capture Unit; I antenna per SCU
- Analog to Digital Converters sample at 245.76 Msps
- Uses a Xylinx Virtex-6 FPGA (XC6VLX130T)
- Allows 8 independent "Slice Receivers" from
 - 30kHz to 77MHz and 135MHz to 165MHz

VIRTEX-6 FPGA

- Number of Logic Blocks (CLBs) 20,000
- Number of Logic Elements 128,000
- Number of I/Os 240
- Package 484 pin Flip-Chip Ball Grid Array (22x22)
- Price \$767.50

So What is an FPGA?

- FPGA means Field Programmable Gate Array
- It's a large Integrated Circuit that performs digital logic functions
- It's configurable (e.g. Programmable)
 - Logic Blocks (Programmable Logic Devices)
 - Input/Output (I/O) circuits or ports
 - Interconnects
- It also contains other circuits such as:
 - Random Access Memory (RAM)
 - Clock Manager
 - Dedicated Multipliers, Adders, and Counters
 - Ethernet ports
- The "logical units" in an FPGA are repeated in a matrix format e.g. in rows and columns

SPECTRUM OF DIGITAL ICs

- Highly Configurable
- Fast Design Time
- Can't Support Complex Logic

- No Reconfiguration
- Time-Consuming Design
- Expensive
- Support Complex Functions

Applications For FPGAs

- Useful when the volumes do not support ASICS
- Digital Signal Processing
- Medical Imaging, CT Scanners, MRI, X-Ray
- Speech Recognition
- Cryptography
- Radio Astronomy
- Avionics
- Computer Networks and Routing
- Industrial Motor Control
- Some FPGAs now embedding ARM microprocessors.

BASIC ORGANIZATION OF AN FPGA

CLB = CONFIGURABLE LOGIC BLOCK IOB = INPUT/OUTPUT BLOCK

BASIC CONFIGURABLE LOGIC BLOCK (CLB)

- LUT is a "Look Up Table" (more on next slide)
- MUX is a "multiplexer" or a switch
- The Flip Flop is a simple storage element

WHAT IS A LOOK UP TABLE (LUT)?

- The ALTERA EP3C40Q240C8N has a 4-input LUT
- The XYLINX XC6VLX130T has a 6-input LUT

Programming Methods

- Static RAM (SRAM) based
 - Xilinx, Altera
 - Can reprogram
 - Data need to be read at "start-up"
- "Antifuse" technology
 - Actel, Quicklogic
 - "One-Time" programming
- EPROM/EEPROM Not used very much

SRAM Method

- Can program SRAM to 0 or 1
- 0 disconnects lines; I connects line

- Can "Make" or "Break" cross-point connections
- Can define function of Logic Blocks
- SRAM cells are organized as a large "shift register" and programmed through "configurable pins" on the FPGA integrated circuit by a serial string of bits

WHY USE AN FPGA INSTEAD OF MICROPROCESSOR?

- FPGAs are faster Why?
- Groups of CLBs in an FPGA can be combined to accomplish specific functions.
- Other CLB groups are combined to accomplish other functions
- All these different functions can be done simultaneously
- But a microprocessor must accomplish its tasks sequentially which takes longer

HOW ARE FPGAS PROGRAMMED?

- Similar to programming microprocessors
 - Integrated Development Environment (IDE)
 - Graphical User Interface (GUI)
 - Programming language (like Basic or C++)
 - Other software for converting the programming language into simple instructions the microprocessor can understand
- FPGA manufacturers provide software
 - Integrated Software Environment (ISE)
 - Graphical User Interface (GUI)
 - Programming language: Verilog or VHDL
 - Other software for
 - + Partitioning, Mapping, and Routing on the IC
 - + Simulating the design

WHAT DOES VERILOG CODE LOOK LIKE?

```
// Design Name : up_counter
// File Name : up_counter.v
// Function : Up counter
// Coder : Deepak
module up counter (
out , // Output of the counter
enable , // enable for counter
clk , // clock Input
reset // reset Input
);
//----Output Ports-----
   output [7:0] out;
//----Input Ports-----
    input enable, clk, reset;
//----Internal Variables----
   reg [7:0] out;
//----Code Starts Here----
always @(posedge clk)
if (reset) begin
 out <= 8'b0;
end else if (enable) begin
 out <= out + 1;
end
```